TRIGONOMETRY FINALUNTT PROJECT

Name: \qquad

Block: \qquad

Due date: \qquad

Instructions:

You will be designing a 6 hole mini golf course based on the paths travelled by the golf balls provided to you. You must then use your knowledge of trigonometry to solve for the distance travelled by each ball given the length directly from the ball to the hole.

There are 6 steps to each question:

- Design and colour the hole. Keep in mind that when you're designing the hole the path of the ball (length x and y) needs to be within the hole. The rest of the triangle does not. So be creative! Come up with some cool shapes!
- Find the first two angles using the two sides that you're given.
- Using the fact that all angles in a triangle equal 180 degrees, calculate the remaining angles using the right angles and the ones you just measured.
- Now it's time to calculate the distance travelled by the ball. First calculate how long the first stroke was using sin. (Be careful you choose the correct angle to use!) This is length x.
- Then calculate how long the second stroke was using cos. (Be careful you choose the correct angle to use!) This is length y.
- Now calculate the total distance the ball travelled. Compare this to the direct distance to the hole. Was it bigger or smaller?

Marking:

Overall features

- Each hole is unique and coloured (6 marks, 1 mark each hole)
- Hand it in on time (4 marks)

Individual Holes

- Angle m and n are calculated correctly (6 marks, 1 mark label triangle each, 1 mark set up ratio each, 1 mark calculate for angle each)
- Angle a and b are calculated correctly (2 marks, 1 mark each)
- First stroke length measured correctly (3 marks, 1 mark label triangle, 1 mark set up ratio, 1 mark calculate for missing side)
- Second stroke length measured correctly (3 marks, 1 mark label triangle, 1 mark set up ratio, 1 mark calculate for missing side)
- Total length calculated correctly and stated whether bigger or smaller than direct distance (1 marks, 0.5 mark each)

Total

- 15 marks per hole (6 holes total)
- 10 marks overall

Hole 1:

a) Design the hole around the triangle so that the path the ball travels is contained by the hole.

b) Calculate angle m and angle n using the two sides you're given. Label them on the triangles.
c) Calculate angles a and b using the fact that all angles in a triangle add up to 180 degrees. Label them on the triangles.
d) Calculate distance x using sin and circle or highlight it.
e) Calculate distance y using \cos and circle or highlight it.
f) Calculate total distance and circle or highlight it. Was it bigger or smaller than the direct distance to the hole?

Hole 2:

a) Design the hole around the triangle so that the path the ball travels is contained by the

b) Calculate angle m and angle n using the two sides you're given. Label them on the triangles.
c) Calculate angles a and b using the fact that all angles in a triangle add up to 180 degrees. Label them on the triangles.
d) Calculate distance x using sin and circle or highlight it.
e) Calculate distance y using \cos and circle or highlight it.
f) Calculate total distance and circle or highlight it. Was it bigger or smaller than the direct distance to the hole?

Hole 3:

a) Design the hole around the triangle so that the path the ball travels is contained by the hole.

b) Calculate angle m and angle n using the two sides you're given. Label them on the triangles.
c) Calculate angles a and b using the fact that all angles in a triangle add up to 180 degrees. Label them on the triangles.
d) Calculate distance x using sin and circle or highlight it.
e) Calculate distance y using \cos and circle or highlight it.
f) Calculate total distance and circle or highlight it. Was it bigger or smaller than the direct distance to the hole?

Hole 4:

a) Design the hole around the triangle so that the path the ball travels is contained on the hole.

b) Calculate angle m and angle n using the two sides you're given. Label them on the triangles.
c) Calculate angles a and b using the fact that all angles in a triangle add up to 180 degrees. Label them on the triangles.
d) Calculate distance x using sin and circle or highlight it.
e) Calculate distance y using \cos and circle or highlight it.
f) Calculate total distance and circle or highlight it. Was it bigger or smaller than the direct distance to the hole?

Hole 5:

a) Design the hole around the triangle so that the path the ball travels is contained by the hole.

b) Calculate angle m and angle n using the two sides you're given. Label them on the triangles.
c) Calculate angles a and b using the fact that all angles in a triangle add up to 180 degrees. Label them on the triangles.
d) Calculate distance x using sin and circle or highlight it.
e) Calculate distance y using \cos and circle or highlight it.
f) Calculate total distance and circle or highlight it. Was it bigger or smaller than the direct distance to the hole?

Hole 6:

a) Design the hole around the triangle so that the path the ball travels is contained by the hole.

b) Calculate angle m and angle n using the two sides you're given. Label them on the triangles.
c) Calculate angles a and b using the fact that all angles in a triangle add up to 180 degrees. Label them on the triangles.
d) Calculate distance x using sin and circle or highlight it.
e) Calculate distance y using \cos and circle or highlight it.
f) Calculate total distance and circle or highlight it. Was it bigger or smaller than the direct distance to the hole?

